class ScaledNumber
Declaration
template <class DigitsT>
class ScaledNumber : private ScaledNumberBase { /* full declaration omitted */ };
Description
Simple representation of a scaled number. ScaledNumber is a number represented by digits and a scale. It uses simple saturation arithmetic and every operation is well-defined for every value. It's somewhat similar in behaviour to a soft-float, but is *not* a replacement for one. If you're doing numerics, look at \a APFloat instead. Nevertheless, we've found these semantics useful for modelling certain cost metrics. The number is split into a signed scale and unsigned digits. The number represented is \c getDigits()*2^getScale(). In this way, the digits are much like the mantissa in the x87 long double, but there is no canonical form so the same number can be represented by many bit representations. ScaledNumber is templated on the underlying integer type for digits, which is expected to be unsigned. Unlike APFloat, ScaledNumber does not model architecture floating point behaviour -- while this might make it a little faster and easier to reason about, it certainly makes it more dangerous for general numerics. ScaledNumber is totally ordered. However, there is no canonical form, so there are multiple representations of most scalars. E.g.: ScaledNumber(8u, 0) == ScaledNumber(4u, 1) ScaledNumber(4u, 1) == ScaledNumber(2u, 2) ScaledNumber(2u, 2) == ScaledNumber(1u, 3) ScaledNumber implements most arithmetic operations. Precision is kept where possible. Uses simple saturation arithmetic, so that operations saturate to 0.0 or getLargest() rather than under or overflowing. It has some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0. Any other division by 0.0 is defined to be getLargest(). As a convenience for modifying the exponent, left and right shifting are both implemented, and both interpret negative shifts as positive shifts in the opposite direction. Scales are limited to the range accepted by x87 long double. This makes it trivial to add functionality to convert to APFloat (this is already relied on for the implementation of printing). Possible (and conflicting) future directions: 1. Turn this into a wrapper around \a APFloat. 2. Share the algorithm implementations with \a APFloat. 3. Allow \a ScaledNumber to represent a signed number.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:492
Inherits from: ScaledNumberBase
Templates
- DigitsT
Method Overview
- public constexpr ScaledNumber<DigitsT>(llvm::ScaledNumber::DigitsType Digits, int16_t Scale)
- public ScaledNumber<DigitsT>()
- public int compare(const ScaledNumber<DigitsT> & X) const
- public int compareTo(uint64_t N) const
- public int compareTo(int64_t N) const
- public void dump() const
- public static ScaledNumber<DigitsT> get(uint64_t N)
- public llvm::ScaledNumber::DigitsType getDigits() const
- public static ScaledNumber<DigitsT> getFraction(llvm::ScaledNumber::DigitsType N, llvm::ScaledNumber::DigitsType D)
- public static ScaledNumber<DigitsT> getInverse(uint64_t N)
- public static ScaledNumber<DigitsT> getLargest()
- public static ScaledNumber<DigitsT> getOne()
- public int16_t getScale() const
- public static ScaledNumber<DigitsT> getZero()
- public ScaledNumber<DigitsT> inverse() const
- public ScaledNumber<DigitsT> & invert()
- public bool isLargest() const
- public bool isOne() const
- public bool isZero() const
- public int32_t lg() const
- public int32_t lgCeiling() const
- public int32_t lgFloor() const
- public llvm::raw_ostream & print(llvm::raw_ostream & OS, unsigned int Precision = DefaultPrecision) const
- public int64_t scale(int64_t N) const
- public uint64_t scale(uint64_t N) const
- public int64_t scaleByInverse(int64_t N) const
- public uint64_t scaleByInverse(uint64_t N) const
- public template <class IntT>IntT toInt() const
- public std::string toString(unsigned int Precision = DefaultPrecision)
Methods
¶constexpr ScaledNumber<DigitsT>(
llvm::ScaledNumber::DigitsType Digits,
int16_t Scale)
constexpr ScaledNumber<DigitsT>(
llvm::ScaledNumber::DigitsType Digits,
int16_t Scale)
Declared at: llvm/include/llvm/Support/ScaledNumber.h:512
Parameters
- llvm::ScaledNumber::DigitsType Digits
- int16_t Scale
¶ScaledNumber<DigitsT>()
ScaledNumber<DigitsT>()
Declared at: llvm/include/llvm/Support/ScaledNumber.h:510
¶int compare(const ScaledNumber<DigitsT>& X) const
int compare(const ScaledNumber<DigitsT>& X) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:668
Parameters
- const ScaledNumber<DigitsT>& X
¶int compareTo(uint64_t N) const
int compareTo(uint64_t N) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:671
Parameters
- uint64_t N
¶int compareTo(int64_t N) const
int compareTo(int64_t N) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:674
Parameters
- int64_t N
¶void dump() const
void dump() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:606
¶static ScaledNumber<DigitsT> get(uint64_t N)
static ScaledNumber<DigitsT> get(uint64_t N)
Declared at: llvm/include/llvm/Support/ScaledNumber.h:525
Parameters
- uint64_t N
¶llvm::ScaledNumber::DigitsType getDigits() const
llvm::ScaledNumber::DigitsType getDigits() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:534
¶static ScaledNumber<DigitsT> getFraction(
llvm::ScaledNumber::DigitsType N,
llvm::ScaledNumber::DigitsType D)
static ScaledNumber<DigitsT> getFraction(
llvm::ScaledNumber::DigitsType N,
llvm::ScaledNumber::DigitsType D)
Declared at: llvm/include/llvm/Support/ScaledNumber.h:529
Parameters
- llvm::ScaledNumber::DigitsType N
- llvm::ScaledNumber::DigitsType D
¶static ScaledNumber<DigitsT> getInverse(
uint64_t N)
static ScaledNumber<DigitsT> getInverse(
uint64_t N)
Declared at: llvm/include/llvm/Support/ScaledNumber.h:526
Parameters
- uint64_t N
¶static ScaledNumber<DigitsT> getLargest()
static ScaledNumber<DigitsT> getLargest()
Declared at: llvm/include/llvm/Support/ScaledNumber.h:522
¶static ScaledNumber<DigitsT> getOne()
static ScaledNumber<DigitsT> getOne()
Declared at: llvm/include/llvm/Support/ScaledNumber.h:521
¶int16_t getScale() const
int16_t getScale() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:533
¶static ScaledNumber<DigitsT> getZero()
static ScaledNumber<DigitsT> getZero()
Declared at: llvm/include/llvm/Support/ScaledNumber.h:520
¶ScaledNumber<DigitsT> inverse() const
ScaledNumber<DigitsT> inverse() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:677
¶ScaledNumber<DigitsT>& invert()
ScaledNumber<DigitsT>& invert()
Declared at: llvm/include/llvm/Support/ScaledNumber.h:676
¶bool isLargest() const
bool isLargest() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:543
¶bool isOne() const
bool isOne() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:544
¶bool isZero() const
bool isZero() const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:542
¶int32_t lg() const
int32_t lg() const
Description
The log base 2, rounded. Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:553
¶int32_t lgCeiling() const
int32_t lgCeiling() const
Description
The log base 2, rounded towards INT32_MAX. Get the lg ceiling. lg 0 is defined to be INT32_MIN.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:563
¶int32_t lgFloor() const
int32_t lgFloor() const
Description
The log base 2, rounded towards INT32_MIN. Get the lg floor. lg 0 is defined to be INT32_MIN.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:558
¶llvm::raw_ostream& print(
llvm::raw_ostream& OS,
unsigned int Precision =
DefaultPrecision) const
llvm::raw_ostream& print(
llvm::raw_ostream& OS,
unsigned int Precision =
DefaultPrecision) const
Description
Print a decimal representation. Print a string. See toString for documentation.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:602
Parameters
- llvm::raw_ostream& OS
- unsigned int Precision = DefaultPrecision
¶int64_t scale(int64_t N) const
int64_t scale(int64_t N) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:659
Parameters
- int64_t N
¶uint64_t scale(uint64_t N) const
uint64_t scale(uint64_t N) const
Description
Scale a large number accurately. Scale N (multiply it by this). Uses full precision multiplication, even if Width is smaller than 64, so information is not lost.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:653
Parameters
- uint64_t N
¶int64_t scaleByInverse(int64_t N) const
int64_t scaleByInverse(int64_t N) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:663
Parameters
- int64_t N
¶uint64_t scaleByInverse(uint64_t N) const
uint64_t scaleByInverse(uint64_t N) const
Declared at: llvm/include/llvm/Support/ScaledNumber.h:654
Parameters
- uint64_t N
¶template <class IntT>
IntT toInt() const
template <class IntT>
IntT toInt() const
Description
Convert to the given integer type. Convert to \c IntT using simple saturating arithmetic, truncating if necessary.
Declared at: llvm/include/llvm/Support/ScaledNumber.h:540
Templates
- IntT
¶std::string toString(
unsigned int Precision = DefaultPrecision)
std::string toString(
unsigned int Precision = DefaultPrecision)
Description
Convert to a decimal representation in a string. Convert to a string. Uses scientific notation for very large/small numbers. Scientific notation is used roughly for numbers outside of the range 2^-64 through 2^64. \c Precision indicates the number of decimal digits of precision to use; 0 requests the maximum available. As a special case to make debugging easier, if the number is small enough to convert without scientific notation and has more than \c Precision digits before the decimal place, it's printed accurately to the first digit past zero. E.g., assuming 10 digits of precision: 98765432198.7654... => 98765432198.8 8765432198.7654... => 8765432198.8 765432198.7654... => 765432198.8 65432198.7654... => 65432198.77 5432198.7654... => 5432198.765
Declared at: llvm/include/llvm/Support/ScaledNumber.h:595
Parameters
- unsigned int Precision = DefaultPrecision